Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 17(1): 21, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649972

RESUMO

Relapse and toxicity limit the effectiveness of chimeric antigen receptor T-cell (CAR-T) therapy for large B-cell lymphoma (LBCL), yet biomarkers that predict outcomes and toxicity are lacking. We examined radiomic features extracted from pre-CAR-T 18F-fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) scans (n = 341) of 180 patients (121 male; median age, 66 years). Three conventional (maximum standardized uptake value [SUVmax], metabolic tumor volume [MTV], total lesion glycolysis [TLG]) and 116 novel radiomic features were assessed, along with inflammatory markers, toxicities, and outcomes. At both pre-apheresis and pre-infusion time points, conventional PET features of disease correlated with elevated inflammatory markers. At pre-infusion, MTV was associated with grade ≥ 2 cytokine release syndrome (odds ratio [OR] for 100 mL increase: 1.08 [95% confidence interval (CI), 1.01-1.20], P = 0.031), and SUVmax was associated with failure to achieve complete response (CR) (OR 1.72 [95% CI, 1.24-2.43], P < 0.001). Higher pre-apheresis and pre-infusion MTV values were associated with shorter progression-free survival (PFS) (HR for 10-unit increase: 1.11 [95% CI, 1.05-1.17], P < 0.001; 1.04 [95% CI, 1.02-1.07], P < 0.001) and shorter overall survival (HR for 100-unit increase: 1.14 [95% CI, 1.07-1.21], P < 0.001; 1.04 [95% CI, 1.02-1.06], P < 0.001). A combined MTV and LDH measure stratified patients into high and low PFS risk groups. Multiple pre-infusion novel radiomic features were associated with CR. These quantitative conventional [18F]FDG PET/CT features obtained before CAR-T cell infusion, which were correlated with inflammation markers, may provide prognostic biomarkers for CAR-T therapy efficacy and toxicity. The use of conventional and novel radiomic features may thus help identify high-risk patients for earlier interventions.


Assuntos
Fluordesoxiglucose F18 , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Feminino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Imunoterapia Adotiva/métodos , Pessoa de Meia-Idade , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Adulto , Resultado do Tratamento , Idoso de 80 Anos ou mais , Compostos Radiofarmacêuticos , Prognóstico , Estudos Retrospectivos
2.
RNA ; 30(4): 381-391, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38253429

RESUMO

Bacterial riboswitches are molecular structures that play a crucial role in controlling gene expression to maintain cellular balance. The Escherichia coli lysC riboswitch has been previously shown to regulate gene expression through translation initiation and mRNA decay. Recent research suggests that lysC gene expression is also influenced by Rho-dependent transcription termination. Through a series of in silico, in vitro, and in vivo experiments, we provide experimental evidence that the lysC riboswitch directly and indirectly modulates Rho transcription termination. Our study demonstrates that Rho-dependent transcription termination plays a significant role in the cotranscriptional regulation of lysC expression. Together with previous studies, our work suggests that lysC expression is governed by a lysine-sensing riboswitch that regulates translation initiation, transcription termination, and mRNA degradation. Notably, both Rho and RNase E target the same region of the RNA molecule, implying that RNase E may degrade Rho-terminated transcripts, providing a means to selectively eliminate these incomplete messenger RNAs. Overall, this study sheds light on the complex regulatory mechanisms used by bacterial riboswitches, emphasizing the role of transcription termination in the control of gene expression and mRNA stability.


Assuntos
Riboswitch , Riboswitch/genética , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo
3.
J Vasc Interv Radiol ; 35(4): 523-532.e1, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215818

RESUMO

PURPOSE: To evaluate the prognostic accuracy of intraprocedural and 4-8-week (current standard) post-microwave ablation zone (AZ) and margin assessments for prediction of local tumor progression (LTP) using 3-dimensional (3D) software. MATERIALS AND METHODS: Data regarding 100 colorectal liver metastases (CLMs) in 75 patients were collected from 2 prospective fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT)-guided microwave ablation (MWA) trials. The target CLMs and theoretical 5- and 10-mm margins were segmented and registered intraprocedurally and at 4-8 weeks after MWA contrast-enhanced CT (or magnetic resonance [MR] imaging) using the same methodology and 3D software. Tumor and 5- and 10-mm minimal margin (MM) volumes not covered by the AZ were defined as volumes of insufficient coverage (VICs). The intraprocedural and 4-8-week post-MWA VICs were compared as predictors of LTP using receiver operating characteristic curve analysis. RESULTS: The median follow-up time was 19.6 months (interquartile range, 7.97-36.5 months). VICs for 5- and 10-mm MMs were predictive of LTP at both time assessments. The highest accuracy for the prediction of LTP was documented with the intra-ablation 5-mm VIC (area under the curve [AUC], 0.78; 95% confidence interval, 0.66-0.89). LTP for a VIC of 6-10-mm margin category was 11.4% compared with 4.3% for >10-mm margin category (P < .001). CONCLUSIONS: A 3D 5-mm MM is a critical endpoint of thermal ablation, whereas optimal local tumor control is noted with a 10-mm MM. Higher AUCs for prediction of LTP were achieved for intraprocedural evaluation than for the 4-8-week postablation 3D evaluation of the AZ.


Assuntos
Ablação por Cateter , Neoplasias Hepáticas , Humanos , Resultado do Tratamento , Estudos Prospectivos , Micro-Ondas/efeitos adversos , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/secundário , Estudos Retrospectivos
4.
J Nucl Med ; 64(11): 1779-1787, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652541

RESUMO

A single-institution prospective pilot clinical trial was performed to demonstrate the feasibility of combining [177Lu]Lu-PSMA-617 radiopharmaceutical therapy (RPT) with stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic castration-sensitive prostate cancer. Methods: Six patients with 9 prostate-specific membrane antigen (PSMA)-positive oligometastases received 2 cycles of [177Lu]Lu-PSMA-617 RPT followed by SBRT. After the first intravenous infusion of [177Lu]Lu-PSMA-617 (7.46 ± 0.15 GBq), patients underwent SPECT/CT at 3.2 ± 0.5, 23.9 ± 0.4, and 87.4 ± 12.0 h. Voxel-based dosimetry was performed with calibration factors (11.7 counts per second/MBq) and recovery coefficients derived from in-house phantom experiments. Lesions were segmented on baseline PSMA PET/CT (50% SUVmax). After a second cycle of [177Lu]Lu-PSMA-617 (44 ± 3 d; 7.50 ± 0.10 GBq) and an interim PSMA PET/CT scan, SBRT (27 Gy in 3 fractions) was delivered to all PSMA-avid oligometastatic sites, followed by post-PSMA PET/CT. RPT and SBRT voxelwise dose maps were scaled (α/ß = 3 Gy; repair half-time, 1.5 h) to calculate the biologically effective dose (BED). Results: All patients completed the combination therapy without complications. No grade 3+ toxicities were noted. The median of the lesion SUVmax as measured on PSMA PET was 16.8 (interquartile range [IQR], 11.6) (baseline), 6.2 (IQR, 2.7) (interim), and 2.9 (IQR, 1.4) (post). PET-derived lesion volumes were 0.4-1.7 cm3 The median lesion-absorbed dose (AD) from the first cycle of [177Lu]Lu-PSMA-617 RPT (ADRPT) was 27.7 Gy (range, 8.3-58.2 Gy; corresponding to 3.7 Gy/GBq, range, 1.1-7.7 Gy/GBq), whereas the median lesion AD from SBRT was 28.1 Gy (range, 26.7-28.8 Gy). Spearman rank correlation, ρ, was 0.90 between the baseline lesion PET SUVmax and SPECT SUVmax (P = 0.005), 0.74 (P = 0.046) between the baseline PET SUVmax and the lesion ADRPT, and -0.81 (P = 0.022) between the lesion ADRPT and the percent change in PET SUVmax (baseline to interim). The median for the lesion BED from RPT and SBRT was 159 Gy (range, 124-219 Gy). ρ between the BED from RPT and SBRT and the percent change in PET SUVmax (baseline to post) was -0.88 (P = 0.007). Two cycles of [177Lu]Lu-PSMA-617 RPT contributed approximately 40% to the maximum BED from RPT and SBRT. Conclusion: Lesional dosimetry in patients with oligometastatic castration-sensitive prostate cancer undergoing [177Lu]Lu-PSMA-617 RPT followed by SBRT is feasible. Combined RPT and SBRT may provide an efficient method to maximize the delivery of meaningful doses to oligometastatic disease while addressing potential microscopic disease reservoirs and limiting the dose exposure to normal tissues.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Radiocirurgia , Masculino , Humanos , Compostos Radiofarmacêuticos/efeitos adversos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/patologia , Dipeptídeos/uso terapêutico , Antígeno Prostático Específico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Castração , Lutécio/uso terapêutico
5.
J Nucl Med ; 64(8): 1295-1303, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37268423

RESUMO

Radiopharmaceutical dosimetry is usually estimated via organ-level MIRD schema-style formalisms, which form the computational basis for commonly used clinical and research dosimetry software. Recently, MIRDcalc internal dosimetry software was developed to provide a freely available organ-level dosimetry solution that incorporates up-to-date models of human anatomy, addresses uncertainty in radiopharmaceutical biokinetics and patient organ masses, and offers a 1-screen user interface as well as quality assurance tools. The present work describes the validation of MIRDcalc and, secondarily, provides a compendium of radiopharmaceutical dose coefficients obtained with MIRDcalc. Biokinetic data for about 70 currently and historically used radiopharmaceuticals were obtained from the International Commission on Radiological Protection (ICRP) publication 128 radiopharmaceutical data compendium. Absorbed dose and effective dose coefficients were derived from the biokinetic datasets using MIRDcalc, IDAC-Dose, and OLINDA software. The dose coefficients obtained with MIRDcalc were systematically compared against the other software-derived dose coefficients and those originally presented in ICRP publication 128. Dose coefficients computed with MIRDcalc and IDAC-Dose showed excellent overall agreement. The dose coefficients derived from other software and the dose coefficients promulgated in ICRP publication 128 both were in reasonable agreement with the dose coefficients computed with MIRDcalc. Future work should expand the scope of the validation to include personalized dosimetry calculations.


Assuntos
Folhetos , Compostos Radiofarmacêuticos , Humanos , Radiometria , Software , Imagens de Fantasmas , Doses de Radiação
6.
J Nucl Med ; 64(7): 1117-1124, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268428

RESUMO

Medical internal radiation dosimetry constitutes a fundamental aspect of diagnosis, treatment, optimization, and safety in nuclear medicine. The MIRD committee of the Society of Nuclear Medicine and Medical Imaging developed a new computational tool to support organ-level and suborgan tissue dosimetry (MIRDcalc, version 1). Based on a standard Excel spreadsheet platform, MIRDcalc provides enhanced capabilities to facilitate radiopharmaceutical internal dosimetry. This new computational tool implements the well-established MIRD schema for internal dosimetry. The spreadsheet incorporates a significantly enhanced database comprising details for 333 radionuclides, 12 phantom reference models (International Commission on Radiological Protection), 81 source regions, and 48 target regions, along with the ability to interpolate between models for patient-specific dosimetry. The software also includes sphere models of various composition for tumor dosimetry. MIRDcalc offers several noteworthy features for organ-level dosimetry, including modeling of blood source regions and dynamic source regions defined by user input, integration of tumor tissues, error propagation, quality control checks, batch processing, and report-preparation capabilities. MIRDcalc implements an immediate, easy-to-use single-screen interface. The MIRDcalc software is available for free download (www.mirdsoft.org) and has been approved by the Society of Nuclear Medicine and Molecular Imaging.


Assuntos
Folhetos , Radiometria , Humanos , Radiometria/métodos , Software , Radioisótopos , Dosagem Radioterapêutica
7.
EJNMMI Phys ; 9(1): 72, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258098

RESUMO

BACKGROUND: An open-source, extensible medical viewing platform is described, called the TriDFusion image viewer (3DF). The 3DF addresses many broad unmet needs in nuclear medicine research; it provides a viewer with several tools not available in commercial nuclear medicine workstations, yet invaluable for imaging in research studies. RESULTS: The 3DF includes an image integration platform to register images from multiple imaging modalities together with delineated volumes of interest (VOIs), structures and dose distributions. It can process images from different vendors' systems and is therefore vendor neutral. The 3DF also provides a convenient tool for performing multi-modality image analysis and fusion. The functional components currently being distributed is open-source code that includes: (1) a high quality viewer that can display axial, coronal, and sagittal tomographic images, maximum intensity projection images, structure contours, and isointensity contour lines or dose colorwash, (2) multi-image fusion allowing multiple images to be fused with VOI and dose distributions, (3) a suite of segmentation tools to edit and/or create tumor and organ VOIs, (4) dosimetry tools for several radioisotopes, (5) clinical tools for correcting acquisition errors, including patient orientation, and (6) the ability to save the resultant image and VOI as DICOM files or to export the numerical results as comma separated values files. Because the code is written in MATLAB™, it is highly readable and is easier for the coder to make changes compared to languages such as C or C++. In what follows, we describe the content of the new TriDFusion (3DF) image viewer software platform using examples of a number of clinical research workflows. Such examples vary in complexity but illustrate the main attributes of the software. CONCLUSIONS: In summary, 3DF provides a powerful, convenient, easy-to-use suite of open-source imaging research tools for the nuclear medicine community that allows physicians, medical physicists, and academic researchers to display, manipulate, and analyze images.

8.
RNA Biol ; 19(1): 916-927, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833713

RESUMO

Transcriptional pausing occurs across the bacterial genome but the importance of this mechanism is still poorly understood. Only few pauses were observed during the previous decades, leaving an important gap in understanding transcription mechanisms. Using the well-known Escherichia coli hisL and trpL pause sites as models, we describe here the relation of pause sites with upstream RNA structures suspected to stabilize pausing. We find that the transcription factor NusA influences the pause half-life at leuL, pheL and thrL pause sites. Using a mutagenesis approach, we observe that transcriptional pausing is affected in all tested pause sites, suggesting that the upstream RNA sequence is important for transcriptional pausing. Compensatory mutations assessing the presence of RNA hairpins did not yield clear conclusions, indicating that complex RNA structures or transcriptional features may be playing a role in pausing. Moreover, using a bioinformatic approach, we explored the relation between a DNA consensus sequence important for pausing and putative hairpins among thousands of pause sites in E. coli. We identified 2125 sites presenting hairpin-dependent transcriptional pausing without consensus sequence, suggesting that this mechanism is widespread across E. coli. This study paves the way to understand the role of RNA structures in transcriptional pausing.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas de Escherichia coli , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Conformação de Ácido Nucleico , RNA/genética , RNA Bacteriano/química , RNA Bacteriano/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
9.
Commun Biol ; 5(1): 457, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552496

RESUMO

Transcriptional pausing is crucial for the timely expression of genetic information. Biochemical methods quantify the half-life of paused RNA polymerase (RNAP) by monitoring restarting complexes across time. However, this approach may produce apparent half-lives that are longer than true pause escape rates in biological contexts where multiple consecutive pause sites are present. We show here that the 6-nitropiperonyloxymethyl (NPOM) photolabile group provides an approach to monitor transcriptional pausing in biological systems containing multiple pause sites. We validate our approach using the well-studied his pause and show that an upstream RNA sequence modulates the pause half-life. NPOM was also used to study a transcriptional region within the Escherichia coli thiC riboswitch containing multiple consecutive pause sites. We find that an RNA hairpin structure located upstream to the region affects the half-life of the 5' most proximal pause site-but not of the 3' pause site-in contrast to results obtained using conventional approaches not preventing asynchronous transcription. Our results show that NPOM is a powerful tool to study transcription elongation dynamics within biologically complex systems.


Assuntos
Proteínas de Escherichia coli , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico
10.
Proc Natl Acad Sci U S A ; 119(20): e2122660119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561226

RESUMO

The transcriptome represents an attractive but underused set of targets for small-molecule ligands. Here, we devise a technology that leverages fragment-based screening and SHAPE-MaP RNA structure probing to discover small-molecule fragments that bind an RNA structure of interest. We identified fragments and cooperatively binding fragment pairs that bind to the thiamine pyrophosphate (TPP) riboswitch with millimolar to micromolar affinities. We then used structure-activity relationship information to efficiently design a linked-fragment ligand, with no resemblance to the native ligand, with high ligand efficiency and druglikeness, that binds to the TPP thiM riboswitch with high nanomolar affinity and that modulates RNA conformation during cotranscriptional folding. Principles from this work are broadly applicable, leveraging cooperativity and multisite binding, for developing high-quality ligands for diverse RNA targets.


Assuntos
Dobramento de RNA , Riboswitch , Bibliotecas de Moléculas Pequenas , Pareamento de Bases , Ligantes , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tiamina Pirofosfato/química , Transcrição Gênica
11.
J Nucl Med ; 63(7): 1027-1032, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34772795

RESUMO

68Ga-labeled somatostatin analog (SSA) PET/CT is now a standard-of-care component in the management of neuroendocrine tumors (NETs). However, treatment response for NETs is still assessed with morphologic size measurements from other modalities, which can result in inaccuracy about the disease burden. Functional tumor volume (FTV) acquired from SSA PET/CT has been suggested as a possible metric, but no validated measurement tool to measure FTV exists. We tested the precision of multiple FTV computational approaches compared with morphologic volume measurements to identify a candidate for incorporation into future FTV studies to assess tumor burden more completely and accurately. Methods: The clinical and imaging data of 327 NET patients were collected at Memorial Sloan Kettering Cancer Center between December 2016 and April 2018. Patients were required to have SSA PET/CT and dedicated CT scans within 6 wk and were excluded if they had any intervention between scans. When paired studies were evaluated, 150 correlating lesions demonstrated SSA. Lesions were excluded if they contained necrotic components or were lobulated. This exclusion resulted in 94 lesions in 20 patients. The FTV for each lesion was evaluated with a hand-drawn assessment and 3 automated techniques: 50% threshold from SUVmax, 42% threshold from SUVmax, and background-subtracted lesion activity. These measurements were compared with volume calculated from morphologic volume measurements. Results: The FTV calculation methods showed varying correlations with morphologic volume measurements. FTV using a 42% threshold had a 0.706 correlation, hand-drawn volume from PET imaging had a 0.657 correlation, FTV using a 50% threshold had a 0.645 correlation, and background-subtracted lesion activity had a 0.596 correlation. The Bland-Altman plots indicated that all FTV methods had a positive mean difference from morphologic volume, with a 50% threshold showing the smallest mean difference. Conclusion: FTV determined with thresholding of SUVmax demonstrated the strongest correlation with traditional morphologic lesion volume assessment and the least bias. This method was more accurate than FTV calculated from hand-drawn volume assessments. Threshold-based automated FTV assessment promises to better determine disease extent and prognosis in patients with NETs.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Radioisótopos de Gálio , Humanos , Tumores Neuroendócrinos/metabolismo , Compostos Organometálicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Cintilografia , Compostos Radiofarmacêuticos , Somatostatina , Carga Tumoral
12.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740970

RESUMO

Cotranscriptional RNA folding is crucial for the timely control of biological processes, but because of its transient nature, its study has remained challenging. While single-molecule Förster resonance energy transfer (smFRET) is unique to investigate transient RNA structures, its application to cotranscriptional studies has been limited to nonnative systems lacking RNA polymerase (RNAP)-dependent features, which are crucial for gene regulation. Here, we present an approach that enables site-specific labeling and smFRET studies of kilobase-length transcripts within native bacterial complexes. By monitoring Escherichia coli nascent riboswitches, we reveal an inverse relationship between elongation speed and metabolite-sensing efficiency and show that pause sites upstream of the translation start codon delimit a sequence hotspot for metabolite sensing during transcription. Furthermore, we demonstrate a crucial role of the bacterial RNAP actively delaying the formation, within the hotspot sequence, of competing structures precluding metabolite binding. Our approach allows the investigation of cotranscriptional regulatory mechanisms in bacterial and eukaryotic elongation complexes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Riboswitch/fisiologia , Imagem Individual de Molécula/métodos , Elongação da Transcrição Genética , Carbocianinas , Escherichia coli , Proteínas de Escherichia coli/análise , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes
13.
RNA Biol ; 18(sup2): 699-710, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612173

RESUMO

Clostridioides difficile is the main cause of nosocomial antibiotic-associated diarrhoea. There is a need for new antimicrobials to tackle this pathogen. Guanine riboswitches have been proposed as promising new antimicrobial targets, but experimental evidence of their importance in C. difficile is missing. The genome of C. difficile encodes four distinct guanine riboswitches, each controlling a single gene involved in purine metabolism and transport. One of them controls the expression of guaA, encoding a guanosine monophosphate (GMP) synthase. Here, using in-line probing and GusA reporter assays, we show that these riboswitches are functional in C. difficile and cause premature transcription termination upon binding of guanine. All riboswitches exhibit a high affinity for guanine characterized by Kd values in the low nanomolar range. Xanthine and guanosine also bind the guanine riboswitches, although with less affinity. Inactivating the GMP synthase (guaA) in C. difficile strain 630 led to cell death in minimal growth conditions, but not in rich medium. Importantly, the capacity of a guaA mutant to colonize the mouse gut was significantly reduced. Together, these results demonstrate the importance of de novo GMP biosynthesis in C. difficile during infection, suggesting that targeting guanine riboswitches with analogues could be a viable therapeutic strategy.


Assuntos
Carbono-Nitrogênio Ligases/genética , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Regulação Bacteriana da Expressão Gênica , Riboswitch , Animais , Carbono-Nitrogênio Ligases/metabolismo , Genoma Bacteriano , Genômica/métodos , Guanina , Camundongos , Viabilidade Microbiana/genética , Mutação , Transcrição Gênica , Virulência/genética
14.
Nucleic Acids Res ; 49(10): 5891-5904, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33963862

RESUMO

Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.


Assuntos
Adenina/química , Aptâmeros de Nucleotídeos/química , Vibrio vulnificus/química , Sítios de Ligação , Ligantes , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Dobramento de RNA , Riboswitch , Imagem Individual de Molécula , Software , Espectroscopia de Infravermelho com Transformada de Fourier , Vibrio vulnificus/genética
15.
Biochim Biophys Acta Gene Regul Mech ; 1863(3): 194501, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036061

RESUMO

Riboswitches are RNA sensors that have been shown to modulate the expression of downstream genes by altering their structure upon metabolite binding. Riboswitches are unique among cellular regulators in that metabolite detection is strictly performed using RNA interactions with the sensed metabolite and in which no regulatory protein is needed to mediate the interaction. However, recent studies have shed light on riboswitch control mechanisms relying on protein regulators to harness metabolite binding for the mediation of gene expression, thereby increasing the range of cellular factors involved in riboswitch regulation. The interaction between riboswitches and proteins adds another level of evolutionary pressure as riboswitches must maintain key residues for metabolite detection, structural switching and protein binding sites. Here, we review regulatory mechanisms involving Escherichia coli riboswitches that have recently been shown to rely on regulatory proteins. We also discuss the implication of such protein-based riboswitch regulatory mechanisms for genetic regulation.


Assuntos
Regulação da Expressão Gênica , Riboswitch , Endorribonucleases/metabolismo , Escherichia coli/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator Rho/metabolismo , Terminação da Transcrição Genética
16.
Nucleic Acids Res ; 47(12): 6478-6487, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31045204

RESUMO

Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer-ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Magnésio/fisiologia , Riboswitch , Bacillus subtilis/química , Bacillus subtilis/genética , Transferência Ressonante de Energia de Fluorescência , Ligantes , Magnésio/análise , Dobramento de RNA , Transcrição Gênica
17.
RNA Biol ; 16(8): 1066-1073, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31081713

RESUMO

Transcriptional pauses have been reported in bacterial riboswitches and, in some cases, their specific positioning has been shown to be important for gene regulation. Here, we show that a hairpin structure in the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch is involved in transcriptional pausing and ligand sensitivity. Using in vitro transcription kinetic experiments, we show that all three major transcriptional pauses in the thiC riboswitch are affected by NusA, a transcriptional factor known to stimulate hairpin-stabilized pauses. Using a truncated region of the riboswitch, we isolated the hairpin structure responsible for stabilization of the most upstream pause. Destabilization of this structure led to a weaker pause and a decreased NusA effect. In the context of the full-length riboswitch, this same mutation also led to a weaker pause, as well as a decreased TPP binding affinity. Our work suggests that RNA structures involved in transcriptional pausing in riboswitches are important for ligand sensitivity, most likely by increasing the time allowed to the ligand for binding to the riboswitch.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Riboswitch/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Conformação de Ácido Nucleico , Tiamina Pirofosfato/genética , Fatores de Transcrição/genética
18.
RNA ; 24(8): 1067-1079, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777050

RESUMO

Telomerases are ribonucleoprotein (RNP) reverse transcriptases. While telomerases maintain genome stability, their composition varies significantly between species. Yeast telomerase RNPs contain an RNA that is comparatively large, and its overall folding shows long helical segments with distal functional parts. Here we investigated the essential stem IVc module of the budding yeast telomerase RNA, called Tlc1. The distal part of stem IVc includes a conserved sequence element CS2a and structurally conserved features for binding Pop1/Pop6/Pop7 proteins, which together function analogously to the P3 domains of the RNase P/MRP RNPs. A more proximal bulged stem with the CS2 element is thought to associate with Est1, a telomerase protein required for telomerase recruitment to telomeres. Previous work found that changes in CS2a cause a loss of all stem IVc proteins, not just the Pop proteins. Here we show that the association of Est1 with stem IVc indeed requires both the proximal bulged stem and the P3 domain with the associated Pop proteins. Separating the P3 domain from the Est1 binding site by inserting only 2 base pairs into the helical stem between the two sites causes a complete loss of Est1 from the RNP and hence a telomerase-negative phenotype in vivo. Still, the distal P3 domain with the associated Pop proteins remains intact. Moreover, the P3 domain ensures Est2 stability on the RNP independently of Est1 association. Therefore, the Tlc1 stem IVc recruitment module of the RNA requires a very tight architectural organization for telomerase function in vivo.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Ribonuclease P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , RNA/genética
19.
RNA Biol ; 15(6): 679-682, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29537923

RESUMO

Riboswitches are RNA regulators that control gene expression by modulating their structure in response to metabolite binding. The study of mechanisms by which riboswitches modulate gene expression is crucial to understand how riboswitches are involved in maintaining cellular homeostasis. Previous reports indicate that riboswitches can control gene expression at the level of translation, transcription or mRNA decay. However, there are very few described examples where riboswitches regulate multiple steps in gene expression. Recent studies of a translation-regulating, TPP-dependent riboswitch have revealed that ligand binding is also involved in the control of mRNA levels. In this model, TPP binding to the riboswitch leads to the inhibition of translation, which in turn allows for Rho-dependent transcription termination. Thus, mRNA levels are indirectly controlled through ribosome occupancy. This is in contrast to other riboswitches that directly control mRNA levels by modulating the access of regulatory sequences involved in either Rho-dependent transcription termination or RNase E cleavage activity. Together, these findings indicate that riboswitches modulate both translation initiation and mRNA levels using multiple strategies that direct the outcome of gene expression.


Assuntos
Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Biossíntese de Proteínas/fisiologia , Estabilidade de RNA/fisiologia , Riboswitch/fisiologia , Transcrição Gênica/fisiologia , Bactérias/genética
20.
Eur J Med Chem ; 143: 755-768, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220796

RESUMO

Riboswitches recently emerged as possible targets for the development of alternative antimicrobial approaches. Guanine-sensing riboswitches in the bacterial pathogen Clostridioides difficile (formerly known as Clostridium difficile) constitute potential targets based on their involvement in the regulation of basal metabolic control of purine compounds. In this study, we deciphered the structure-activity relationship of several guanine derivatives on the guanine riboswitch and determined their antimicrobial activity. We describe the synthesis of purine analogs modified in ring B as well as positions 2 and 6. Their biological activity was determined by measuring their affinity for the C. difficile guanine riboswitch and their inhibitory effect on bacterial growth, including a counter-screen to discriminate against riboswitch-independent antibacterial effects. Altogether, our results suggest that improvements in riboswitch binding affinity in vitro do not necessarily translate into improved antibacterial activity in bacteria, despite the fact that some structure-activity relationship was observed at least with respect to binding affinity.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Guanina/antagonistas & inibidores , Purinas/farmacologia , Riboswitch/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Relação Dose-Resposta a Droga , Guanina/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...